• Abdelhakim HK, El-Sayed ER, Rashidi FB (2020) Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 128:1634–1646. https://doi.org/10.1111/jam.14581

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Almasi H, Ghanbarzadeh B, Entezami AA (2010) Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int J Biol Macromol 46:1–5. https://doi.org/10.1016/j.ijbiomac.2009.10.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Anugrah DSB, Alexander H, Pramitasari R, Hudiyanti D, Sagita CB (2020) A review of polysaccharide-zinc oxide nanocomposites as safe coating for fruits preservation. Coatings 10:988. https://doi.org/10.3390/coatings10100988

    CAS 
    Article 

    Google Scholar
     

  • ASTM (1990) Standard practice for conditioning plastics and electrical insulating materials for testing: D618-61 (reapproved 1990). In: Annual book of American Standard Testing Methods, Vol. 8.01. (1995) Philadelphia.

  • Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly (vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler. Int J Nanomed 9:1909–1917. https://doi.org/10.2147/IJN.S60274

    Article 

    Google Scholar
     

  • Basumatary IB, Mukherjee A, Katiyar V, Kumar S (2020) Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1848789

    Article 
    PubMed 

    Google Scholar
     

  • Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine 3:9. https://doi.org/10.5772/63437

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B 111:556–560. https://doi.org/10.1016/j.colsurfb.2013.06.041

    CAS 
    Article 

    Google Scholar
     

  • Dehghania S, Peighambardousta SH, Peighambardoust SJ, Hosseini VL, Joe Regenstein JM (2019) Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Packag Shelf Life 22:100391. https://doi.org/10.1016/j.fpsl.2019.100391

    Article 

    Google Scholar
     

  • Ebrahimi Y, Peighambardoust SJ, Peighambardoust SH, Karkaj SZ (2019) Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. J Food Sci 84:2537–2548. https://doi.org/10.1111/1750-3841.14744

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER (2021) Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J Appl Microbiol 131:2886–2898. https://doi.org/10.1111/jam.15169

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Zaki AG (2022) Unlocking the biosynthetic potential of Penicillium roqueforti for hyperproduction of the immunosuppressant mycophenolic acid: gamma radiation mutagenesis and response surface optimization of fermentation medium. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2353

    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Ahmed AS, Ismaiel AA (2019a) Agro-industrial byproducts for production of the immunosuppressant mycophenolic acid by Penicillium roqueforti under solid-state fermentation: enhanced production by ultraviolet and gamma irradiation. Biocatal Agric Biotechnol 18:101015. https://doi.org/10.1016/j.bcab.2019.01.053

    Article 

    Google Scholar
     

  • El-Sayed ER, Ismaiel AA, Ahmed AS, Hassan IA, Karam El-Din AA (2019b) Bioprocess optimization using response surface methodology for production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima: enhanced production by ultraviolet and gamma irradiation. Biocatal Agric Biotechnol 18:100966. https://doi.org/10.1016/j.bcab.2019.01.034

    Article 

    Google Scholar
     

  • El-Sayed ER, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din AA (2019c) Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 103:8923–8935. https://doi.org/10.1007/s00253-019-10129-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Abdelhakim HK, Ahmed AS (2020a) Solid–state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioproc Biosyst Eng 43:797–809. https://doi.org/10.1007/s00449-019-02275-7

    CAS 
    Article 

    Google Scholar
     

  • El-Sayed ER, Abdelhakim HK, Zakaria Z (2020b) Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: yield enhancement by gamma irradiation. Mater Sci Eng C 107:110318. https://doi.org/10.1016/j.msec.2019.110318

    CAS 
    Article 

    Google Scholar
     

  • El-Sayed ER, Ahmed AS, Abdelhakim HK (2020c) A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: Isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. J Appl Microbiol 128:747–762. https://doi.org/10.1011/JAM.14510

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Zaki AG, Ahmed AS, Ismaiel AA (2020d) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl Microbiol Biotechnol 104:6991–7003. https://doi.org/10.1007/s00253020-10712-x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Ahmed AS, Al-Hagar OEA (2020e) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol 128:1427–1439. https://doi.org/10.1111/jam.14574

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din AA (2020f) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst Eng 43:997–1008. https://doi.org/10.1007/s00449-020-02295-8

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Hazaa MA, Shebl MA, Amer MM, Mahmoud SR, Khattab AA (2022a) Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr 12:46. https://doi.org/10.1186/s13568-022-01386-x

    CAS 
    Article 

    Google Scholar
     

  • El-Sayed ER, Mousa SA, Abdou DAM, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS (2022b) Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of CO3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci 29:2463–2474. https://doi.org/10.1016/j.sjbs.2021.12.019

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed ER, Gach J, Olejniczak T, Boratyński F (2022c) A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 12:12611. https://doi.org/10.1038/s41598-022-16269-1

    CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A (2018) Development of novel active polypropylene-based packaging films containing different concentrations of sorbic acid. Food Packag Shelf Life 18:87–94. https://doi.org/10.1016/j.fpsl.2018.10.001

    Article 

    Google Scholar
     

  • Hajizadeh H, Peighambardoust SJ, Peighambardoust SH, Peressini D (2020) Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. J Food Sci 85:1193–1202. https://doi.org/10.1111/1750-3841.15079

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Han Y, Wang L (2017) Sodium alginate/carboxymethyl cellulose films containing pyrogallic acid: physical and antibacterial properties. J Sci Food Agric 97:1295–1301. https://doi.org/10.1002/jsfa.7863

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hazaa AA, Shebl MM, EEl-Sayed ER, Mahmoud SR, Khattab AA, Amer MM (2022) Bioprospecting endophytic fungi for antifeedants and larvicides and their enhancement by gamma irradiation. AMB Express

  • Hernandez-Mun P, Villalobos R, Chiralt A (2004) Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocoll 18:403. https://doi.org/10.1016/S0268-005X(03)00128-0

    CAS 
    Article 

    Google Scholar
     

  • Hosseini MR, Sarviab MN (2015) Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater Sci Semicond Process 40:293–301. https://doi.org/10.1016/j.mssp.2015.06.003

    CAS 
    Article 

    Google Scholar
     

  • Hussein HG, El-Sayed ER, Younis NA, Hamdy AA, Easa SM (2022) Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Expr 12:68. https://doi.org/10.1186/s13568-022-01408-8

    CAS 
    Article 

    Google Scholar
     

  • Jebel SF, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19. https://doi.org/10.1016/j.carbpol.2016.04.089

    CAS 
    Article 

    Google Scholar
     

  • Khodaeimehr R, Peighambardoust SJ, Peighambardoust SH (2018) Preparation and characterization of corn starch/clay nanocomposite films: effect of clay content and surface modification. Starch 70:1700251. https://doi.org/10.1002/star.201700251

    CAS 
    Article 

    Google Scholar
     

  • Kovacic P, Somanathan R (2013) Nanoparticles: toxicity, radicals, electron transfer, and antioxidants. In Armstrong, D., Bharali, D. (Eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology (Methods and Protocols), vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_2

  • La DD, Nguyen-Tri P, Le KH, Nguyen PTM, Nguyen MD, Vo ATK, Nguyen MTH, Chang SW, Tran LD, Chung WJ, Nguyen DD (2021) Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Prog Org Coat 151:106057. https://doi.org/10.1016/j.porgcoat.2020.106057

    CAS 
    Article 

    Google Scholar
     

  • Mousa SA, El-Sayed ER, Mohamed SS, Abo El-Seoud MA, Elmehlawy AA, Abdou DAM (2021) Novel mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic Aspergillus terreus and evaluation of their antioxidant and antimicrobial activities. Appl Microbiol Biotechnol 105:741–753. https://doi.org/10.1007/s00253-020-11046-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519. https://doi.org/10.1016/j.jfoodeng.2012.07.017

    CAS 
    Article 

    Google Scholar
     

  • Ngo TMP, Dang TMO, Tran TX, Rachtanapun B (2018) Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films. Int J Polym Sci 2018:5645797. https://doi.org/10.1155/2018/5645797

    CAS 
    Article 

    Google Scholar
     

  • Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479. https://doi.org/10.1016/j.carbpol.2017.04.042

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Peighambardoust SJ, Pourabbas B (2007) Preparation and characterization of nylon-6/PPy/MMT composite of nanocomposite. J Appl Polym Sci 106:697–705. https://doi.org/10.1002/app.26709

    CAS 
    Article 

    Google Scholar
     

  • Peighambardoust SJ, Peighambardoust SH, Pournasir N, Pakdel PM (2019) Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 22:100420. https://doi.org/10.1016/j.fpsl.2019.100420

    Article 

    Google Scholar
     

  • Sahraeea S, Milanib JM, Regensteinc GM, Kafild HS (2019) Protection of foods against oxidative deterioration using edible films and coatings: a review. Food Biosci 32:100451. https://doi.org/10.1016/j.fbio.2019.100451

    CAS 
    Article 

    Google Scholar
     

  • Shah A, Hasan AF, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shahid S, Fatima U, Sajjad R, Khan SA (2019) Bioinspired nanotheranostic agent: zinc oxide; green synthesis and biomedical potential. Digest J Nanomater Biostruct 14:1023–1031


    Google Scholar
     

  • Tien CL, Letendre M, Ispas-Szabo P, Mateescu MA, Delmas-Patterson G, Yu HL, Lacroix M (2000) Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J Agric Food Chem 48:5566. https://doi.org/10.1021/jf0002241

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wajiha QNA, Afridi R (2018) Comparative analysis of egg adapted vaccines and salinomycin against coccidiosis in chicks. Microb Pathog 123:454–460. https://doi.org/10.1016/J.MICPATH.2018.08.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yoo S, Krochta JM (2011) Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J Sci Food Agric 91:2628–2636. https://doi.org/10.1002/jsfa.4502

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yusof HM, Mohamad R, Zaidan UH, Abdul Rahman N (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10:57. https://doi.org/10.1186/s40104-019-0368-z

    CAS 
    Article 

    Google Scholar
     

  • Zahedim Y, Fathi-Achachlouei B, Yousefi AR (2018) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol 108:863–873. https://doi.org/10.1016/j.ijbiomac.2017.10.185

    CAS 
    Article 

    Google Scholar
     

  • Zaki AG, El-Sayed ER (2021) New and potent production platform of the acetylcholinesterase inhibitor Huperzine A by gamma-irradiated Alternaria brassicae under solid-state fermentation. Appl Microbiol Biotechnol 105:8869–8880. https://doi.org/10.1007/s00253-021-11678-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zambrano-Zaragoza ML, González-Reza R, Mendoza-Muñoz N, Miranda-Linares V, Bernal-Couoh TF, Mendoza-Elvira S, Quintanar-Guerrer D (2018) Nanosystems in edible coatings: a novel strategy for food preservation. Int J Mol Sci 19:705. https://doi.org/10.3390/ijms19030705

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)