Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147
Litz RE, Raharjo S (2005) Dimocarpus longan longan and Litchi chinensis litchi. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, pp 628–636
Pan Y, Wang K, Huang S (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem 106(3):1264–1270
Yang B, Zhao M, Shi J, Yang N, Jiang Y (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106(2):685–690
Lal N, Sahu N, Jayswal DK, Diwan G, Tandon K (2020) Traditional, medicinal and nutraceutical values of minor fruit: longan. Curr J Appl Sci Technol 39:59–70
Khan MR, Huang C, Durrani Y, Muhammad A (2021) Chemistry of enzymatic browning in longan fruit as a function of pericarp pH and dehydration and its prevention by essential oil, an alternative approach to SO2 fumigation. PeerJ. 9:e11539
Muthukumarasamy R, Ilyana A, Fithriyaani NA, Najihah NA, Asyiqin N, Sekar M (2016) Formulation and evaluation of natural antioxidant cream comprising methanolic peel extract of Dimocarpus longan. Int J Pharm Clin Res 8(9):1305–1309
Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18:1995–2018
Hasan SMR, Jamila M, Majumder MM, Akter R, Hossain MM, Mazumder MEH et al (2009) Analgesic andantioxidant activity of the hydromethanolic extract of Mikaniascandens (L.) willd leaves. Am J Pharmacol Toxicol 4:1–7
Zainol MK, Abd-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total 4-phenolic compounds of leaf, root and petiole of four accessions of centella asiatica L. urban. Food Chem 81:575–581
Cook NC, Samman S (1996) Flavonoids- chemistry, metabolism, cardioprotective effecst and dietary sources. Nutr Biochem. 7:66–76
Sebai H, Jabri MA, Souli A, Rtibi K, Selmi S, Tebourbi O et al (2014) Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol. 152(2):327–332
Zemestani M, Rafraf M, Asghari-Jafarabadi M (2016) Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nut 32:66–72. https://doi.org/10.1016/j.nut.2015.07.011
Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 30:233–245
Ranpariya V, Parmar S, Sheth N, Chandrashekhar V (2011) Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharma Biol 49:696–701
Silva N, Barbosa L, Seito L, Fernandes Junior A (2012) Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Pro Res 26:1510–1514. https://doi.org/10.1080/14786419.2011.564582
Cvetanovic A (2021) Apigenin. 545-562. In: Mushtaq M, Anwar F (eds) A centum of valuable plant bioactives. Academic Press. https://doi.org/10.1016/B978-0-12-822923-1.00024-8. https://www.sciencedirect.com/science/article/pii/B9780128229231000248
Shaltout K (2018) Status of the Egyptian biodiversity: a bibliography (2000-2018). Contribution to the sixth national report on biological diversity in Egypt. UNDP
Holobiuc M, Blindu R, Mitoi M, Heleciuc F, Cristea V (2009) The establishment of an in vitro gene bank in Dianthus spiculifolius Schur and D. glacialis ssp. Gelidus (Schott Nym. et Kotschy) Tutin: I. The initiation of a tissue collection and the characterization of the cultures in minimal growth conditions. Ann For Res 52:117–128
Pence VC (2005) In vitro collecting (IVC). I. The effect of media and collection method on contamination in temperature and tropical collections. In Vitro Cell Dev Biol Plant. 41:324–332
Rajasekharan PE, Ambika SR, Ganeshan S (2009) In vitro conservation of Tylophora indica: a threatened medicinal plant. IUP J Genet Evol. 11(3):26–35
Sarasan V, Cripps R, Ramsay MM, Atherton C, Michen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol Plant. 42:206–214
International Union for Conservation of Nature (2020) “Fagaceae” The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32399A9698234.en. Version 2020-2 from https://www.iucnredlist.org. Accessed 10 Oct 2020
World Checklist of Selected Plant Families (Facilitated by the Royal Botanic Gardens, Kew. Retrieved 5 September 2016 – via The Plant List). Published on the Internet; http://wcsp.science.kew.org/
Aitken-christie J, Kozai T, Smith MAL (1995) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht
Singh M, Sonkusale S, Niratker CH, Shukla P (2014) Micropropagation of Shorea robusta: an economically important woody plant. J Forest Sci 60(2):70–74
Manju S (2002) Biodiversity conservation and socio-economic development: role and relevance of biotechnology. In: Nandi SK, Palni LMS, Kumar A (eds) Role of plant tissue culture in biodiversity conservation and economic development. G.B. Institute of Himalayan Environments and Development, Himavikas Occassional Publication, 15, pp 1–9
Lai Z, Chen C, Zeng L, Chen Z (2000) Somatic embryogenesis in longan (Dimocarpus longan Lour.). Somatic embryogenesis in woody plants. Springer, Dordrecht, pp 415–431
Rout GR, Jain M (2004) Micropropagation of ornamental plant – cut flower. Propag Ornament Plant. 4(2):3–28
Amoo SO, Staden JV (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micro propagated Huernia hystrix. Plant Cell Tissue Organ Cult 112:249–256
Guo B, Wei YH, Abbasi BH, Zeb A, Xu LL (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(45):8984–9000
Jiafu W, Bizhu H (2000) In vitro culture of longan shoot tips. J Fujian Agric Univ. 29(1):23–26
Thu M, Lin Y, Chen J, Chunzhen C, Munir N, Xu X et al (2017) Flower types, pollen morphology, and in vitro pollen germination of longan (Dimocarpus longan Lour.). J Botany Res 1:50–56
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with to-bacco tissue culture. Physiologia Plantarum. 15:473–497
Pirttilä MA, Hirsikorpi M, Kämäräinen T, Jaakola L, Hohtola A (2001) DNA isolation methods for medicinal and aromatic plants. Plant Mol Biol Rep. 19:273
Vos P, Hogers R, Bleeker M, Reljans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 21:4407–4414
Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tiss Organ Cult 142:583–593. https://doi.org/10.1007/s11240-020-01885-4
Biswas N, Balac P, Narlakanti SK, Enamul Haque MD, Mehedi Hassan MD (2013) Identification of phenolic compounds in processed cranberries by HPLC method. J Nutr Food Sci 3:181. https://doi.org/10.4172/2155-9600.1000181
Duncan DB (1955) Multiple range and multiple “F” test. Biometrics 11:1–42
Jiang Q et al (2012) Establishment of an in vitro plant regeneration protocol for Casuarina cunninghamiana Miq. via indirect organogenesis. New For. 43:143–154
Wang S, Tang L, Chen F (2001) In vitro flowering of bitter melon. Plant Cell Rep. 20:393–397
Karatas M, Aasim M, Çinar A, Dogan M (2013) Adventitious shoot regeneration from leaf explant of dwarf hygro (Hygrophila polysperma (Roxb.) T. Anderson). Sci World J. 2013:680425
Mali AM, Chavan NS (2016) In vitro rapid regeneration through direct organogenesis and ex-vitro establishment of Cucumis trigonus Roxb.: an underutilized pharmaceutically important cucurbit. Ind Crops Prod. 83:48–54
Ullah A, Munir S, Badshah SL, Khan LN, Ghani L, Poulson BG, Emwas AH, Jaremko M (2020) Important flavonoids and their role as a therapeutic agent. Molecules (Basel, Switzerland) 25(22):5243. https://doi.org/10.3390/molecules25225243
Chalupa V (2002) In vitro propagation of mature trees of Sorbus aucuparia L. and field performance of micropropagated trees. J For Sci 48:529–535
Ritchie SW, Hodgess TK (1993) Cell culture and regeneration of transgenic plants. Transgenic Plant 1:147–173
Mendoza JP, Garcia GR, Quiroz K, Chong B, Pino H, Carrasco B (2021) In vitro propagation of Gaultheria pumila (L.f.) D.J. Middleton (Ericaceae), a Chilean native berry with commercial potential. Int J Agric Nat Resour 48:83–96
Karyanti ST, Rudiyana Y, Hanifah NF, Sa’adah N, Dasumiati (2021) Micropropagation of red ginger (Zingiber officinale Rosc. Var. Rubrum) using several types of cytokinins. J Phys 1751:012051
Kulpa D, Wesołowska A, Jadczak P (2018) Micropropagation and composition of essentials oils in garden thyme (Thymus vulgaris L.). Not Bot Horti Agrobo 46(2):525–532
Rahimi S, Naderi R, Ghaemaghami SA, Kalatejari S, Farham B (2013) Study on effects of different Plant Growth Regulators types in shoot regeneration and node formation of Sutsuki Azalea (Rhododendron indicum): a commercially important bonsai. 3rd International Conference on Tissue Engineering, ICTE2013. Procedia Eng 59:240–246
Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants 9:26–38
Nikule HA, Nitnaware KM, Chambhare MR, Kadam NS, Borde MY, Nikam TD (2020) In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: a new source of phyllanthin, hypophyllanthin and phyltetralin. Sci Rep 10:10668
De Carvalho PP, Antoniazzi CA, De Faria RB, Carvalho IFD, Rocha D, Silva ML (2019) In vitro organogenesis from root explants of Passiflora miniata Mast., an amazonian species with ornamental potential. Braz Arch Biol Technol. 62:e19170803
Ahmad N, Anis M (2007) Rapid clonal multiplication of a woody tree, Vitex negundo L. through axillary shoots proliferation. Agrofor Syst 71:195–200
Mansouri K, Preece JE (2009) The influence of plant growth regulators on explant performance, bud break, and shoot growth from large stem segments of Acer saccharinum L. Plant Cell Tissue Organ Cult 99:313
Taha RA, Allam MA, Hassan SAM, Bakr BMM, Hassan MM (2021) Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. J Genet Eng Biotechnol. 19:14
Dey M, Bakshi S, Galiba G (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3. Biotech. 2:233–240
Mundhara R, Rashid A (2002) Stimulation of shoot-bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium: effect of calcium, cytokinin and thidiazuron. Plant Sci. 162:211–214
Hutchinson M, Murch S, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium× hortorum Bailey). J Plant Physiol 149:573–579
Dello IR, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 17(8):678–682
Kulaeva ON (1980) In: Skoog F (ed) Plant growth substances. Springer-Verlag. Berlin, Heidelberg, pp 119–128
Yew CK, Balakrishnan B, Sundasekaran J, Subramaniam S (2010) The effect of cytokinins on in vitro shoot length and multiplication of Hymenocallis littoralis. J Med Plants Res 4:2641–2646
Suarez Padrón IE, Pérez Meza PM, López Díaz CM (2020) Evaluation of sucrose and GA3 in an in vitro shoot culture of Alpinia purpurata (Zingiberaceae). Ciencia y Tecnología Agropecuaria 21(2):1–13. https://doi.org/10.21930/rcta
Ali S, Khan N, Nouroz F, Erum S, Nasim W, Adnan SM (2018) In vitro effects of GA3 on morphogenesis of cip potato explants and acclimatization of plantlets in field. In Vitro Cell Dev Biol Plant. 54(1):104–111
Brondani G, de Wit OH, Baccarin F, Natal A, de Almeida M (2012) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. In Vitro Cell Dev Biol Plant 48(5):478–487
Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34(4):845–872
Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34(4):740–760
Kuhnle J, Moore P, Haddon W, Fitch M (1983) Identification of gibberellins from sugarcane plants. J Plant Growth Regul 2(1):59–71
Sarropoulou V, Maloupa E (2019) Micropropagation and ex situ conservation of Silene fabaria (L.) Sm. in Sibth. & Sm. subsp. domokina Greuter (Caryophyllaceae); an important endemic plant in Greece with medicinal and ornamental value. Journal of Advances in Biotechnology 8:1044–1057. https://doi.org/10.24297/jbt.v8i0.8062
Nitnaware KM, Naik DG, Nikam TD (2011) Tidiazuron-induced shoot organogenesis and production of hepatoprotective lignan phyllanthin and hypophyllanthin in Phyllanthus amarus. Plant Cell Tissue Organ Cult. 104:101–110
Shiragave PD (2015) In vitro micropropagation study in a medicinal plant Phyllanthus reticulates Poir. Int J Adv Life Sci. 8:161–166
Saiju HK, Bajracharya A, Rajbahak B, Ghimire S (2018) Comparative study of growth statistics of two species of Paulownia and optimization of rooting methods. Nepal J Biotech 6(1):11–15
Yadollahi A, Arab MM, Shojaeiyan A, Shokri S, Ghojah SM (2014) Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G×N15 (hybrid of almond x peach) vegetative rootstock. J Genetic Engin Biotech 12:81–87
Raveendar S, Lee G, Lee KJ, Shin M, Kim SH, Lee J, Cho G, Hyun DY (2019) DNA barcoding for efficient identification of Triticum subspecies: evaluation of four candidate loci on phylogenetic relationships. Plant Breed Biotech 7(3):220–228
Mirzaei L, Yadollahi A, Kermani M, Naderpour M, Zeinanloo A, Farsi M, Davoodi D (2021) Evaluation of genetic stability in olive callus-induced and meristem-induced shoots using flow cytometry and amplified fragment length polymorphism techniques. Plant Methods 17:10
Wójcik D, Trzewik A, Kucharska D (2021) Field performance and genetic stability of micropropagated gooseberry plants (Ribes grossularia L.). Agronomy 11:45
Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23(7):492–496
Srivastava S, Krishna R, Sinha RP, Singh M (2017) TDZ-induced plant regeneration in Brassica oleracea L. var. botrytis: effect of antioxidative enzyme activity and genetic stability in regenerated plantlets. In Vitro Cell Dev Biol Plant 53:598–605
Bhardwaj AK, Singh B, Kaur K, Roshan P, Sharma A, Dolker D et al (2018) In vitro propagation, clonal fidelity and phytochemical analysis of Rhodiola imbricate Edgew: a rare trans-Himalayan medicinal plant. Plant Cell Tiss Org Cult 135:499–513
Karp A, Edwards K, Bruford M, Vosman B, Morgante M, Seberg O, Kremer A, Boursot P, Arctander P, Tautz D, Hewitt G (1997) Newer molecular technologies for biodiversity evaluation: opportunities and challenges. Nature Biotechnol 15:625–628
Neqi MS, Singh A, Lakshmikumaran (2000) Genetic variation and relationship among and within Withania species as revealed by AFLP markers. Genome. 43(6):975–980
Palacio L, Cantero JJ, Cusidóc RM, Goleniowski ME (2012) Phenolic compound production in relation to differentiation in cell and tissue cultures of Larreadi varicata (Cav.). Plant Sci 193–194:1–7
Dučaiová Z, Petruľová V, Repčák M (2013) Salicylic acid regulates secondary metabolites content in leaves of Matricaria chamomilla. Biologia 68:904–909. https://doi.org/10.2478/s11756-013-0217-z
Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478. https://doi.org/10.1021/jf071953k
Haghi G, Hatami A, Mehran M (2014) Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharma Sci 9(1):31–37
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)