Sleep health of pregnant women, measured using a reliable and valid scale is important to provide a proper and timely intervention leading to optimal outcomes for expecting mothers and their children. This study assessed the quality of sleep among pregnant women in different pregnancy stages such as mid- and late pregnancy and compared the factor structure of the PSQI scale between two groups. The EFA revealed a two-factor structure model in both women in mid- and late pregnancy; however, each of the two factors in the mid- and late gestational period included different components of the PSQI, indicating different attributes of sleep quality concept.

Among women participated, the proportion of poor sleep quality (global score > 5) reported no statistical difference between the mid- (56.6%) and late (67.8%) gestational period; however, when the actual global score of the PSQI was compared, a significant difference was found. The average score of 7.43 in late pregnancy was significantly higher than the score of 6.38 in mid-pregnancy. This study also supports that the disturbance in sleep becomes worse with the progression of gestation [1, 3, 21, 22]. Using the same PSQI score, the average score was 4.5 in Peruvian pregnant women [13], 5.2 in US pregnant women [8], and 6.1 in a meta-study conducted with pregnant women [1]. Pregnant Korean women seem to report a somewhat higher score and lower sleep quality and this result needs to be investigated to understand the contributing factors leading to decreased sleep quality.

In this study, no participant reported using sleep medication, as generally, pregnant women seldom get prescriptions for it [23]. Thus, zero scores were given on this component and as such, the previously validated cut-off points of five needs to be carefully understood for the pregnant women. This is further supported by the finding that the use of sleep medication showed the lowest correlation with the global PSQI score of pregnant women [13]. For the pregnant women in the meta-analysis, the revised cut-off points were suggested to better differentiate good and poor sleepers [1].

The PSQI was originally developed as a single-factor scale and the construct of sleep quality was defined based on clinical judgment alone [11]. The PSQI was intended to measure the multifaceted nature of sleep quality, including quantitative and subjective aspects of sleep [12]. Zhong (2015) reported a three-factor model (sleep efficiency, sleep quality, medication) in Peruvian pregnant women [13] and a two-factor model (sleep quality and sleep disturbance) in US pregnant women who did not use sleep medication [1]. A two-factor structure has been the most common model of the scale in studies involving a variety of populations, such as healthy adolescents and middle-aged women experiencing hot flashes [12, 13, 24]. As such, in this study with mid- and late pregnancy women, the two-factor model was identified. However, importantly, the component in each factor in each gestational stage was not same.

For the mid-pregnancy group, three components of sleep duration, latency, and efficiency reflected Factor 1 (quantitative sleep quality) and two components, sleep quality and disturbance indicated Factor 2 (subjective sleep quality). However, for the late pregnancy group, the component of “subjective sleep quality” was additionally included in Factor 1 (perceived sleep quality) and daytime dysfunction was included in Factor 2 (daily disturbance). Given that the general characteristics of mid- and late pregnancy did not differ in this study, gestation can possibly be considered as one of the attributes contributing to factor structure change. These findings prove that the attributing component of sleep quality changes depending on the gestational stage in women. Interestingly, the component of daytime dysfunction was not attributed to the sleep quality of pregnant women in mid-pregnancy, indicating that daytime dysfunction did not contribute to the construct of sleep quality but was included in the later stage of pregnancy. This finding supports that the use of a single summed global score of all six components of the PSQI (sleep medication use excluded) might not efficiently capture the multi-dimensional nature of poor sleep quality. In this study, the verification of the factor structure is further examined, before using the PSQI scale.

This study demonstrated the convergent validity of the PSQI with evidence of significant positive correlations between the score of the PSQI and depressive symptoms. Pregnant women with poor sleep quality often reported experiencing more depressive symptoms [21, 25]. This study will aid medical professionals in correctly interpreting the scale’s score and comprehending any factors influencing pregnant women’s sleep quality. A more comprehensive and systematic screening of sleep health during pregnancy is thus required to avoid any health complications. The use of the PSQI scale is a reasonable screening approach that may provide clinicians with information on sleep disturbance. Thus, using it would help health care providers to offer individualized intervention to women with poor sleeping patterns and different gestational periods, thereby inducing better mental health and pregnancy outcomes [22].

The overall Cronbach’s alpha of the PSQI was 0.63, higher than that of the study with Peruvian pregnant women [13]. Varying distributions of Cronbach’s alpha values (0.57–0.83) have been reported using the PSQI scale [12, 13]. In general, Cronbach’s alpha is calculated based on the assumption that the factor loading values were the same, so each item had the same importance [26]. The multi-dimensionality of the PSQI seemed to cause a somewhat lower reliability in this study. The Cronbach’s alpha of this study showed similarity to prior studies that have reported multiple factor models [10, 13].

This study has several limitations. First, it employed a convenience sampling approach, and the sample may not have represented pregnant women in general. Owing to the cross-sectional nature of the study, changes in the factor structure of individual participants could not be warranted; thus, future studies should employ a longitudinal study design to obtain a more reliable result. EFA was used in this study to determine the structure of PSQI in pregnant Korean women. However, it was not possible to conduct confirmatory factor analysis (CFA) to verify whether the measurement tool was measuring by appropriately reflecting the dimension of the concept to be measured due to insufficient participants. Therefore, based on the structure discovered in this study, CFA is required in future studies with a sufficient number of pregnant women participants. Furthermore, in the future, factors affecting the sleep quality of women in mid-and late pregnancy need to be compared and subsequently, timely intervention for pregnant women needs to be developed.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.biomedcentral.com/)