• Rayman MP, Barlis J, Evans RW, Redman CWG, King LJ. Abnormal iron parameters in the pregnancy syndromeclampsia. Am J Obstet Gynecol. 2002;187:412–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rahmati S, Azami M, Parizad N, Sayehmiri K. The relationship between maternal anemia during pregnancy with preterm birth: a systematic review and meta-analysis. J Matern-Fetal Neonatal Med. 2020;33:2679–89.

    PubMed 
    Article 

    Google Scholar
     

  • Figueiredo ACMG, Gomes-Filho IS, Silva RB, Pereira PPS, Da MFAF, Lyrio AO, et al. Maternal anemia and low birth weight: a systematic review and meta-analysis. Nutrients. 2018;10:610.

    Article 

    Google Scholar
     

  • Ribot B, Aranda N, Viteri FE, Hernández-Martínez C, Canals J, Arija V. Depleted iron stores without anaemia early in pregnancy carries increased risk of lower birthweight even when supplemented daily with moderate iron. Hum Reprod. 2012;27:1260–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gutierrez-Aguirre CH, García-Lozano JA, Treviño-Montemayor OR, Iglesias-Benavides JL, Cantú-Rodríguez OG, González-Llano O, et al. Comparative analysis of iron status and other hematological parameters in preeclampsia. Hematol. 2017;22:36–40.

    CAS 
    Article 

    Google Scholar
     

  • Díaz-López A, Ribot B, Basora J, Arija V. High and low Haemoglobin levels in early pregnancy are associated to a higher risk of miscarriage: a population-based cohort study. Nutrients. 2021;13:1578.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Scholl TO. Iron status during pregnancy : setting the stage for mother and infant. Am J Clin Nutr. 2005;81:1218S-1222S.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cusick SE, Georgieff MK. The role of nutrition in brain development: the golden opportunity of the “first 1000 days.” J Pediatr. 2016;175:16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCann S, Amadó MP, Moore SE. The role of iron in brain development: a systematic review. Nutrients. 2020;12:2001.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mattei D, Pietrobelli A. Micronutrients and brain development. Curr Nutr Rep. 2019;8:99–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hernández-Martínez C, Canals J, Aranda N, Ribot B, Escribano J, Arija V. Effects of iron deficiency on neonatal behavior at different stages of pregnancy. Early Hum Dev. 2011;87:165–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Vallée L. Fer et neurodéveloppement. Archives de Pediatrie. 2017;24:5S18-22.

    PubMed 
    Article 

    Google Scholar
     

  • Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci. 2013;7:585.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaillard R, Eilers PHC, Yassine S, Hofman A, Steegers EAP, Jaddoe VWV. Risk factors and consequences of maternal anaemia and elevated haemoglobin levels during pregnancy: a population-based prospective cohort study. Paediatr Perinat Epidemiol. 2014;28:213–26.

    PubMed 
    Article 

    Google Scholar
     

  • Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133:1468S-1472S.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78.

    PubMed 
    Article 

    Google Scholar
     

  • Cusick SE, Georgieff MK, Rao R. Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children. Nutrients. 2018;10:227.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Berglund SK, Torres-Espínola FJ, García-Valdés L, Segura MT, Martínez-Zaldívar C, Padilla C, et al. The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br J Nutr. 2017;118:533–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob Health. 2013;1:16–25.

    Article 

    Google Scholar
     

  • World Health Organization, Williams AL, van Drongelen W, Lasky RE, Sanderson M, Lai D, et al. Guideline : Daily iron and folic acid supplementation in pregnant women, vol. 46 . Geneva: World Health Organization; 2012. p. 323–9.

  • World Health Organization. WHO Recommendation on Antenatal care for positive pregnancy experience. Geneva: WHO Recommendation on Antenatal care for positive pregnancy experience; 2016.


    Google Scholar
     

  • Casanueva E, Viteri FE, Mares-Galindo M, Meza-Camacho C, Loría A, Schnaas L, et al. Weekly iron as a safe alternative to daily supplementation for nonanemic pregnant women. Arch Med Res. 2006;37:674–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Milman N. Oral iron prophylaxis in pregnancy: not too little and not too much! J Pregnancy. 2012;2012:514345.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Milman N. Iron prophylaxis in pregnancy – General or individual and in which dose? Ann Hematol. 2006;85:821–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peña-Rosas JP, Viteri FE. Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev. 2009;7:CD004736.

  • Parsons AG, Zhou SJ, Spurrier NJ, Makrides M. Effect of iron supplementation during pregnancy on the behaviour of children at early school age: long-term follow-up of a randomised controlled trial. Br J Nutr. 2008;99:1133–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou SJ, Gibson RA, Crowther CA, Baghurst P, Makrides M. Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 y of age: long-term follow-up of a randomized controlled trial. Am J Clin Nutr. 2006;83:1112–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Angulo-Barroso RM, Li M, Santos DCC, Bian Y, Sturza J, Jiang Y, et al. Iron supplementation in pregnancy or infancy and motor development: a randomized controlled trial. Pediatrics. 2016;137:e20153547.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crownover B, Covey C. Hereditary Hemochromatosis. Am Fam Physician. 2013;87:183–90.

    PubMed 

    Google Scholar
     

  • Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: A HuGE review. Am J Epidemiol. 2001;154:193–206.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene. 2015;574:179–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aranda N, Hernández-Martínez C, Arija V, Ribot B, Canals J. Haemoconcentration risk at the end of pregnancy: effects on neonatal behaviour. Public Health Nutr. 2017;20:1405–13.

    PubMed 
    Article 

    Google Scholar
     

  • Georgieff MK, Krebs NF, Cusick SE. The benefits and risks of iron supplementation in pregnancy and childhood. Ann Rev Nutr. 2019;39:121–46.

    CAS 
    Article 

    Google Scholar
     

  • Aranda N, Viteri FE, Fernández-Ballart J, Murphy M, Arija V. Frequency of the hemochromatosis gene (HFE) 282C→Y, 63H→D, and 65S→C mutations in a general Mediterranean population from Tarragona. Spain Ann Hematol. 2007;86:17–21.

    PubMed 
    Article 

    Google Scholar
     

  • Quezada-Pinedo HG, Cassel F, Duijts L, Muckenthaler MU, Gassmann M, Jaddoe VWV, et al. Maternal iron status in pregnancy and child health outcomes after birth: a systematic review and meta-analysis. Nutrients. 2021;13:2221.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sammallahti S, Tiemeier H, Reiss IKM, Muckenthaler MU, el Marroun H, Vermeulen M. Maternal early-pregnancy ferritin and offspring neurodevelopment: a prospective cohort study from gestation to school age. Paediatr Perinat Epidemiol. 2022;36:425–34.

    PubMed 
    Article 

    Google Scholar
     

  • Iglesias L, Canals J, Arija V. Effects of prenatal iron status on child neurodevelopment and behavior: A systematic review. Crit Rev Food Sci Nutr. 2017;58:1604–14.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Aranda N, Ribot B, Viteri FE, Cavallé P, Arija V. Predictors of haemoconcentration at delivery: association with low birth weight. Eur J Nutr. 2013;52:1631–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iglesias-Vázquez L, Arija V, Aranda N, Aparicio E, Serrat N, Fargas F, et al. The effectiveness of different doses of iron supplementation and the prenatal determinants of maternal iron status in pregnant Spanish women: ECLIPSES study. Nutrients. 2019;11:2418.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Beutler E, Felitti V, Gelbart T, Ho N. The effect of HFE genotypes on measurements of iron overload in patients attending a health appraisal clinic. Ann Intern Med. 2000;133:329–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Milman N, Byg KE, Bergholt T, Eriksen L, Hvas AM. Body iron and individual iron prophylaxis in pregnancy – Should the iron dose be adjusted according to serum ferritin? Ann Hematol. 2006;85:567–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jayasinghe C, Polson R, van Woerden HC, Wilson P. The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: A systematic review and meta-analysis. BMC Pediatr. 2018;18:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Larson LM, Phiri KS, Pasricha SR. Iron and Cognitive Development: What Is the Evidence? Ann Nutr Metab. 2017;71:25–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saint SE, Frick JE. Prenatal Supplementation and Its Effects on Early Childhood Cognitive Outcome. In: Wallace TC, editor. Dietary Supplements in Health Promotion. CRC Press; 2015. p. 88–117.


    Google Scholar
     

  • Arija V, Fargas F, March G, Abajo S, Basora J, Canals J, et al. Adapting iron dose supplementation in pregnancy for greater effectiveness on mother and child health: protocol of the ECLIPSES randomized clinical trial. BMC Pregnancy Childbirth. 2014;14:33.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Trinidad Rodríguez I, Fernández Ballart J, Cucó Pastor G, Biarnés Jordà E, Arija VV. Validation of a short questionnaire on frequency of dietary intake: reproducibility and validity. Nutr Hosp. 2008;23:242–52.

    PubMed 

    Google Scholar
     

  • Jardí C, Aparicio E, Bedmar C, Aranda N, Abajo S, March G, et al. Food consumption during pregnancy and post-partum ECLIPSES Study. Nutrients. 2019;11(10):2447.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fagerström KO. Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav. 1978;3:235–41.

    PubMed 
    Article 

    Google Scholar
     

  • The IPAQ Group. International Physical Activity Questionnaire. IPAQ Website. 2015.


    Google Scholar
     

  • Spielberger CD, Gorsuch RL LR. STAI Cuestionario de Ansiedad Estado Rasgo. (Adaptación española: Nicolás Seisdedos Cubero). 1997.

  • Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh postnatal depression scale. Br J Psychiatry. 1987;150:782–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • David F, Tienpont B, Klee MS, Tripp P. Automated Sample Preparation for Profiling Fatty Acids in Blood and Plasma Using the Agilent 7693. Agil Appl Note. 5990‑4822E. Agilent. 2009.

  • Aparicio E, Martín-Grau C, Hernández-Martinez C, Voltas N, Canals J, Arija V. Changes in fatty acid levels (saturated, monounsaturated and polyunsaturated) during pregnancy. BMC Pregnancy Childbirth. 2021;21:778.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Díaz-López A, Jardí C, Villalobos M, Serrat N, Basora J, Arija V. Prevalence and risk factors of hypovitaminosis D in pregnant Spanish women. Sci Rep. 2020;10:15757.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Voltas N, Canals J, Hernández-Martínez C, Serrat N, Basora J, Arija V. Effect of vitamin d status during pregnancy on infant neurodevelopment: The ECLIPSES study. Nutrients. 2020;12:3196.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martinat M, Rossitto M, di Miceli M, Layé S. Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders. Nutrients. 2021;13:1185.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou R, el Marroun H, Voortman T, Hillegers M, White T, Tiemeier H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. Am J Clin Nutr. 2021;114:124–33.

    PubMed 
    Article 

    Google Scholar
     

  • Iglesias-Vázquez L, Serrat N, Bedmar C, Pallejà-Millán M, Arija V. Prenatal folic acid supplementation and folate status in early pregnancy: ECLIPSES study. Br J Nutr 2021;6:1–8.

  • Bayley N. Bayley Scales of Infant and Toddler Development–Third Edition. San Antonio. 2006.

  • Aranda N, Viteri FE, Montserrat C, Arija V. Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona. Spain Ann Hematol. 2010;89:767–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yadav K, Arjun MC, Jacob OM, Kant S, Ahamed F, Ramaswamy G. Comparison of different doses of daily iron supplementation for anemia prophylaxis in pregnancy: A systematic review. J Family Med Prim Care. 2020;9:1308.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Milman N, Taylor CL, Merkel J, Brannon PM. Iron status in pregnant women and women of reproductive age in Europe. Am J Clin Nutr. 2017;106:1655S-1662S.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Health Organization. Worldwide prevalence of anaemia 1993–2005. Geneva: World Health Organization; 2008.

  • Arija V, Ribot B, Aranda N. Prevalence of iron deficiency states and risk of haemoconcentration during pregnancy according to initial iron stores and iron supplementation. Public Health Nutr. 2013;16:1371–8.

    PubMed 
    Article 

    Google Scholar
     

  • Tran TD, Tran T, Simpson JA, Tran HT, Nguyen TT, Hanieh S, et al. Infant motor development in rural Vietnam and intrauterine exposures to anaemia, iron deficiency and common mental disorders: a prospective community-based study. BMC Pregnancy Childbirth. 2014;14:8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang S, Zeng L, Brouwer ID, Kok FJ, Yan H. Effect of iron deficiency anemia in pregnancy on child mental development in rural China. Pediatrics. 2013;131:e755–63.

    PubMed 
    Article 

    Google Scholar
     

  • Tran TD, Biggs BA, Tran T, Simpson JA, Hanieh S, Dwyer T, et al. Impact on infants’ cognitive development of antenatal exposure to iron deficiency disorder and common mental disorders. PLoS ONE. 2013;8:1–9.

    Article 

    Google Scholar
     

  • Yang L, Ren A, Liu J, Ye R, Hong S, Zheng J. Influence of hemoglobin level during early gestation on the development of cognition of pre-school children. Zhonghua Liu Xing Bing Xue Za Zhi. 2010;31:1353–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140:165–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mireku MO, Davidson LL, Koura GK, Ouedraogo S, Boivin MJ, Xiong X, et al. Prenatal Hemoglobin Levels and Early Cognitive and Motor Functions of One-Year-Old Children. Pediatrics. 2015;136:e76-83.

    PubMed 
    Article 

    Google Scholar
     

  • Kvestad I, Hysing M, Ranjitkar S, Shrestha M, Ulak M, Chandyo RK, et al. The stability of the Bayley scales in early childhood and its relationship with future intellectual abilities in a low to middle income country. Early Hum Dev. 2022;170: 105610.

    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)