• Saginala K, Barsouk A, Aluru JS, Rawla P, Padala SA, Barsouk A. Epidemiology of bladder cancer. Med Sci (Basel). 2020;8(1):15E. https://doi.org/10.3390/medsci8010015.

    CAS 
    Article 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 Epub 2021 Feb 4. PMID: 33538338.

    Article 
    PubMed 

    Google Scholar
     

  • Goodison S, Rosser CJ, Urquidi V. Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diagn Ther. 2013;17:71–84.

    CAS 
    Article 

    Google Scholar
     

  • Chamie K, Litwin MS, Bassett JC, et al. Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: a population-based analysis. Cancer. 2013;119:3219–27.

    Article 

    Google Scholar
     

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS 
    Article 

    Google Scholar
     

  • Wood I, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89(1):3–9. https://doi.org/10.1079/BJN2002763.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Kashyap S, et al. Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism. 2004;53(9):1233–42.

    CAS 
    Article 

    Google Scholar
     

  • Garrido P, Osorio FG, Moran J, Cabello E, Alonso A, Freije JM, et al. Loss of GLUT4 induces metabolic reprogramming and impairs viability of breast cancer cells. J Cell Physiol. 2015;230:191–8.

    CAS 
    Article 

    Google Scholar
     

  • Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. The dark side of glucose transporters in prostate cancer: are they a new feature to characterize carcinomas? Int J Cancer. 2018;142:2414–24.

    CAS 
    Article 

    Google Scholar
     

  • Ancey PB, Contat C, Meylan E. Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS J. 2018;285(16):2926–43.

    CAS 
    Article 

    Google Scholar
     

  • Lopes-Coelho F, Gouveia-Fernandes S, Serpa J. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumor Biol. 2018;40(2):1010428318756203. https://doi.org/10.1177/1010428318756203 PMID: 29421992.

    CAS 
    Article 

    Google Scholar
     

  • Mesker WE, Liefers GJ, Junggeburt JM, van Pelt GW, Alberici P, Kuppen PJ, et al. Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients. Cell Oncol. 2009;31:169–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23.

    CAS 
    Article 

    Google Scholar
     

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906. https://doi.org/10.1016/j.cell.2009.10.027 PMID: 19931152.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mezheyeuski A, Segersten U, Leiss LW, Malmström PU, Hatina J, Östman A, et al. Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep. 2020;10(1):281. https://doi.org/10.1038/s41598-019-55013-0 PMID: 31937798.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59:85–93.

    CAS 
    Article 

    Google Scholar
     

  • Eble JN, Sauter G, Epstein JI, Sesterhenn IA. World Health Organization classification of tumours. Pathology and genetics of tumours of the urinary system and male genital organs. Lyon: IARC Press; 2004.


    Google Scholar
     

  • Moch H, Humphrey PA, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. Geneva: WHO Press; 2016.


    Google Scholar
     

  • Zhai J, xi Liu C, Tian Z, Jiang Q, Sun Y. Effects of metformin on the expression of GLUT4 in endometrium of obese women with polycystic ovary syndrome. Biol Reprod. 2012;87(2):29–33. https://doi.org/10.1095/biolreprod.112.099788.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li F, Wu X, Sun Z, Cai P, Wu L, Li D. Fibroblast activation protein-α expressing fibroblasts promote lymph node metastasis in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:8141–8.

    CAS 
    Article 

    Google Scholar
     

  • Fus LP, Pihowicz P, Koperski L, Marczewska JM, Górnicka B. High cytoplasmic HuR expression is associated with advanced pT stage, high grade and increased microvessel density in urothelial bladder carcinoma. Ann Diagn Pathol. 2018;33:40–4.

    Article 

    Google Scholar
     

  • Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology. 2005;66:4–34.

    Article 

    Google Scholar
     

  • Cai Z, Zhang F, Chen W, Zhang J, Li H. miRNAs: a promising target in the chemoresistance of bladder cancer. Onco Targets Ther. 2019;12:11805–16. https://doi.org/10.2147/OTT.S231489.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kucuk U, Pala EE, Cakır E, Sezer O, Bayol U, Divrik RT, et al. Clinical, demographic and histopathological prognostic factors for urothelial carcinoma of the bladder. Central Eur J Urol. 2015;68(1):30–6. https://doi.org/10.5173/ceju.2015.01.465.

    Article 

    Google Scholar
     

  • Stenzl A, Cowan NC, De Santis M, Kuczyk MA, Merseburger AS, Ribal MJ, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol. 2011;59:1009–18.

    CAS 
    Article 

    Google Scholar
     

  • Jones W, Bianchi K. Aerobic glycolysis: beyond proliferation. Front Immunol. 2015;6:227. https://doi.org/10.3389/fimmu.2015.00227.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu C-J, Xie F, Zhang B, et al. High glucose promotes epithelial-mesenchymal transition of uterus endometrial cancer cells by increasing ER/GLUT4-mediated vegf secretion. Cell Physiol Biochem. 2018;50(2):706–20. https://doi.org/10.1159/000494237.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chang YC, Chi LH, Chang WM, et al. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis. J Hematol Oncol. 2017;10(1):11. https://doi.org/10.1186/s13045-016-0372-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd El-Azeem MA. Glucose Transporter 4 and Interleukin 8 expression in hormone receptor-negative/HER2 overexpressing breast carcinoma subtype: correlation with the biological behavior of the tumor cells and prognostic parameters. IJCBR. 2021;5(2):181–92.


    Google Scholar
     

  • Zeng K, Ju G, Wang H, Huang J. GLUT1/3/4 as novel biomarkers for the prognosis of human breast cancer. Transnat Cancer Res. 2020;9(4):2363–77. https://doi.org/10.21037/tcr.2020.03.50.

    CAS 
    Article 

    Google Scholar
     

  • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

    CAS 
    Article 

    Google Scholar
     

  • Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Front Oncol. 2020;10:317. https://doi.org/10.3389/fonc.2020.00317.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol. 2012;24(6):650–4. https://doi.org/10.1097/CCO.0b013e328356da72.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang R, Zong X. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit Rev Oncol Hematol. 2017;115:13–22. https://doi.org/10.1016/j.critrevonc.2017.04.005.

    Article 
    PubMed 

    Google Scholar
     

  • Swiderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Sliwinska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. In: Szablewski L, editor. Blood Glucose Levels. London: Intech Open; 2020. ISBN 978-1-78985-525-8.


    Google Scholar
     

  • Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. https://doi.org/10.1016/j.pharmthera.2020.107753 PMID: 33259885; PMCID: PMC8084948.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98. https://doi.org/10.1038/nrc.2016.73.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu F, Qi L, Liu B, Liu J, Zhang H, Che D, et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS One. 2015;10(3):e0116683. https://doi.org/10.1371/journal.pone.0116683 PMID: 25775399.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvete J, Larrinaga G, Errarte P, Martín AM, Dotor A, Esquinas C, et al. The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder. Hum Pathol. 2019;91:61–8.

    CAS 
    Article 

    Google Scholar
     

  • Muilwijk T, Akand M, Daelemans S, Marien K, Waumans Y, Kockx M, et al. Stromal marker fibroblast activation protein drives outcome in T1 non-muscle invasive bladder cancer. PLoS One. 2021;16(9):1–9. https://doi.org/10.1371/journal.pone.0257195.

    CAS 
    Article 

    Google Scholar
     

  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401. https://doi.org/10.1038/nrc1877 PMID: 16572188.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11 [PMID: 10519415].

    CAS 
    PubMed 

    Google Scholar
     

  • Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor promoting cell type. Cell Cycle. 2006;5:1597–601 [PMID: 16880743].

    CAS 
    Article 

    Google Scholar
     

  • Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006;66:632–7. https://doi.org/10.1158/0008-5472.CAN-05-3260 PMID: 16423989.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    CAS 
    Article 

    Google Scholar
     

  • Ioachim E, Michael MC, Salmas M, Damala K, Tsanou E, Michael MM, et al. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer. 2006;6:140. https://doi.org/10.1186/1471-2407-6-140 PMID: 16732887; PMCID: PMC1538616.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fus ŁP, Górnicka B. Role of angiogenesis in urothelial bladder carcinoma. Cent Eur J Urol. 2016;69(3):258–63. https://doi.org/10.5173/ceju.2016.830.

    CAS 
    Article 

    Google Scholar
     

  • Huang J, Ma X, Chen X, Liu X, Zhang B, Minmin L, et al. Microvessel density as a prognostic factor in bladder cancer: a systematic review of literature and meta-analysis. Cancer Biomark. 2014;14(6):505–14.

    Article 

    Google Scholar
     

  • Bartoletti R, Cai T, Nesi G, Sardi I, Rizzo M. Qualitative and quantitative analysis of angiogenetic factors in transitional cell bladder carcinoma: relationship with clinical course at 10 years follow-up. Oncol Rep. 2005;14:251–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann E, Bogemann M, Bierer S, Eltze E, Toma MI, Kopke T, et al. The role of the endothelin axis and microvessel density in bladder cancer- correlation with tumor angiogenesis and clinical prognosis. Oncol Rep. 2007;18:133–8.

    PubMed 

    Google Scholar
     

  • Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: a promise towards disease remission. BBA – Rev Cancer. 2021;1876:188563.

    CAS 

    Google Scholar
     

  • Lea MA, Altayyar M, des Bordes C. Inhibition of growth of bladder cancer cells by 3-(3-pyridinyl)-1- (4-pyridinyl)-2-propen-1-one in combination with other compounds affecting glucose metabolism. Anticancer Res. 2015;35:5889–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang F, Ma S, Xue Y, Hou J, Zhang Y. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochem Biophys Res Commun. 2016;469:985–92.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)